Touch type, teclado virtual accesible para ciegos en Android

Una de las limitaciones más importantes que existen en Android, en cuanto a accesibilidad del sistema para usuarios ciegos, es la imposibilidad de utilizar el teclado virtual en pantalla debido a las limitaciones de exploración de los elementos en pantalla a través de la pantalla táctil. Con Talkback o spiel, los dos lectores de pantallas compatibles, actualmente, con Android no se puede explorar la pantalla tocando con los dedos ya que el usuario, cuando coloca un dedo en la pantalla, activa el elemento y después de la activación la síntesis de voz verbaliza qué se ha activado. Esto provoca que el intentar escribir utilizando el teclado en pantalla sea una operación bastante compleja.

La solución ofrecida por el equipo de desarrollo de accesibilidad de Google y el proyecto Eye-free es un tanto ridícula. Oficialmente dicen que se utilice un teléfono con teclado físico o se conecte un teclado externo vía Bluetooth para poder escribir cualquier cosa. Esta solución va en contra del mercado, en el cual cada vez aparecen más teléfonos con sólo pantalla y sin botones. El conectar un teclado externo Bluetooth implica introducir una clave numérica en el terminal para emparejar los dispositivos, ¿pero, si no podemos teclear cómo introduciremos la clave de emparejamiento?

La comunidad de usuarios y desarrolladores de Android no tiene porqué conformarse con las decisiones de Google para Android. Un ejemplo de esto es el proyecto Touch type, desarrollado por un grupo de desarrollo independiente de Google.

Teclado virtual a semejanza de iPhone

Touch type es un programa para Android que permite sustituir el teclado habitual en Android por otro teclado con la particularidad de ser compatible con la síntesis de voz y accesible en la gestión de gestos en la pantalla.

El método de escritura es muy similar a uno de los métodos que ya se utilizan en el iPhone o en el iPad. Se debe arrastrar el dedo por la parte baja de la pantalla, cada vez que el dedo se coloque sobre una letra, esta será verbalizada. Si dejamos de tocar la pantalla, la letra será introducida en el campo de texto.

Para saber más sobre Touch type puedes visitar la página oficial del proyecto Touch type para Android

Esperanzas en un Android accesible para ciegos

Actualmente el proyecto Touch type está en versión beta, por lo que su funcionamiento no es del todo fiable, pero los resultados obtenidos en esta versión inicial hacen que se tengan esperanzas en tener un Android accesible para ciegos a medio plazo.

Lo que queda por hacer en accesibilidad de Android

Tras obtener una solución para el teclado virtual en Android, sólo falta que los lectores de pantallas se puedan utilizar a través de gestos en la pantalla en lugar de utilizar trackballs, cursores o touchpads, así como algunos botones de navegación. Además se debe conseguir una mayor integración de las librerías de accesibilidad para las aplicaciones disponibles en el Market de Android. Con esto podríamos decir que Android será un duro competidor de iOs en cuanto a la accesibilidad para usuarios ciegos.

En cuanto a otros perfiles de discapacidad decir que Google sigue distraída sin prestar oídos a las necesidades de otros perfiles de discapacidad.

Lectores de pantalla

Un lector o revisor de pantallas es una herramienta de asistencia para discapacitados visuales grabes o totales cuya principal función es transmitir al usuario la información que se visualiza por pantalla.

Dentro de los interfaces de texto (como serían la consola de Windows, MSDOS o el Bash de Linux) las funciones del lector de pantalla son simples. Sólo tiene que poder leer cada una de las diversas líneas de texto que aparecen en la consola y transmitirlas al usuario. Otras funciones asociadas para este tipo de lectores son las posibilidades de revisar línea a línea la pantalla, verbalizar los cambios sufridos en la pantalla o crear cuadros de detección para prestar mayor atención a zonas específicas de la pantalla.

El tener un interfaz visual basado en texto y con una estructura de distribución de la información simple, como es el caso de las consolas de texto, simplifica mucho la tarea del lector de pantallas. El problema aparece cuando el interfaz consiste en elementos visuales como iconos, cuadros de texto, ventanas, barras de desplazamiento y demás controles visuales utilizados por la mayoría de interfaces gráficos de usuario comunes en Windows, GNome, KDE y MacOS X.
En este caso el lector de pantallas tiene que realizar una interpretación previa de lo que existe y se ve en la pantalla para transmitirlo al usuario.

Esta interpretación del contenido visual se hace siguiendo un protocolo y conjunto de reglas denominado off screen model.

Dependiendo del tipo de Off screen model el lector de pantallas permitirá una exploración focal (siguiendo al foco del tabulador), exploración línea a línea (como el cursor de JAWS o un lector de pantallas para consola), exploración posicional (como hace voiceOver), o exploración gerarquica utilizando el árbol de objetos (como hace NVDA y tiflowin).
También influirá a la hora de transmitir cierta información como la fuente y color del texto de un control visual, el tamaño del control, el estado del control (activo, visible, oculto, etc) o las caracteristicas de accesibilidad o información alternativa del control (tooltips, globos de texto, etiquetas descriptivas, etc).

Hay que prestar atención en la diferencia que hay entre «lo que existe en la pantalla» y «lo que se ve en la pantalla» ya que el uso de ventanas solapables en los interfaces gráficos puede provocar que el usuario sin discapacidad visual no vea lo que hay detrás de una ventana aunque siga existiendo en el interfaz. El lector de pantallas debe detectar si el control o elemento del interfaz está visible para notificarle el estado al usuario ciego. El lector de pantallas puede controlar la información visual consultando al sistema operativo sobre el árbol de objetos visuales o parasitando el controlador de video, siendo la primera opción la menos intrusiva ya que no se requiere de la instalación de ningún driver o parche de control de video.
El árbol de objetos visuales es una representación abstracta de lo que hay en un interfaz gráfico de usuario. Es utilizado por el sistema operativo para estructurar los diversos elementos de un interfaz gráfico y actualizar el estado y gestionar los eventos. En el árbol de objetos podemos tener la rama inicial en el escritorio y de ella nacen varias ramas hijas representando a las ventanas de las aplicaciones abiertas que tengamos en ese momento, de una de esas ramas pueden colgar subramas para representar subventanas, botones, barras de menú, etc presentando una vista gerarquizada de los elementos del interfaz.

El lector de pantallas también debe estar pendiente del dispositivo de entrada, sea este un teclado, una pantalla táctil o una botonera. El usuario ciego deberá utilizar el dispositivo de entrada para explorar el interfaz gráfico e interactuar con él. Por esta razón el lector de pantallas deberá modificar el comportamiento del dispositivo de entrada para incluir ciertas combinaciones de teclas, gestos o movimientos determinados para realizar las funciones de exploración en el interfaz(leer una ventana o cuadro de texto, moverse al elemento anterior o siguiente del interfaz, activar un elemento del interfaz, etc).

El lector de pantallas debe transmitir el resultado de la interpretación del interfaz al usuario con discapacidad visual utiizando un canal accesible para él, como puede ser voz sintética, eventos de sonido o salida por un dispositivo de lectura braille.

En resumen, un lector de pantallas se compone de los siguientes elementos:

  • Módulo de control del interfaz gráfico
  • Módulo de control del dispositivo de entrada
  • Módulo de salida de información
  • Off screen model

Dentro del catálogo de operaciones que un usuario puede pedir a un lector de pantallas están: Leer caracter, palabra, línea anterior, actual o siguiente; consultar tipo, tamaño y color de fuente, leer título y última línea de la ventana, repetir lo último verbalizado, etc.

Algunos ejemplos de lectores de pantalla son: NVDA, Window eyes, JAWS, Dolphin HAL, Thunder, voiceOver, Orca, Mobile speak, Talks, out spoken, virgo, tiflowin, lector98, habla, parla, etc.

Convivencia de MacOS X y Windows dentro del hardware de Apple

Muchos usuarios que quieren dar el salto al sistema operativo de Apple tienen miedo del periodo de adaptación. Aunque MacOS X sea muy intuitivo es cierto que requiere de un periodo de adaptación, sobre todo si el usuario tiene que acostumbrarse a un nuevo producto de apoyo. Una de las posibles soluciones, para hacer que la experiencia del switcher (denominación que se da a la persona que cambia a otro sistema operativo) no sea tan traumática es utilizar 2 sistemas operativos en la misma máquina.

Boot camp

MacOS X, en sus últimas versiones, incluye una utilidad para estos usuarios que vienen de Windows pero quieren saltar a MacOS X manteniendo el uso de Windows. Esta utilidad se llama Boot camp y permite, desde MacOS X, crear una partición en el disco duro y comenzar el proceso de instalación de windows. Todo el proceso de creación y gestión de Boot camp es accesible pero cuando comience el proceso de instalación de Windows, al reiniciar la máquina, sólo dispondremos de la accesibilidad que proporcione Windows en su proceso de instalación, lo que es muy poca o nula accesibilidad.

Al utilizar Boot camp, en Windows, deberemos instalar una serie de drivers y aplicaciones que nos permitirá aprovechar más el hardware de Apple sobre Windows. Además, nos permitirá seleccionar con qué partición arrancaremos la próxima vez que encendamos el equipo. Con esta característica un usuario ciego puede decidir si arrancar Windows o MacOS X sin necesidad de acceder a Grub, Lilo o cualquier otro gestor de arranque.

Virtualización

Con la solución de Boot camp deberemos reiniciar el equipo cada vez que queramos cambiar de sistema operativo. Esta solución puede ser apropiada para aquellos usuarios que pasen largas sesiones en un sólo sistema operativo. Para los usuarios que trabajen en MacOS X y quieran, muy puntualmente, acceder a Windows para utilizar una aplicación concreta la mejor solución pasa por virtualizar.

La virtualización de un sistema operativo consiste en utilizar una aplicación de virtualización (cliente) que permita ejecutar otro sistema operativo como si fuese un programa.

Para MacOS X hay varias soluciones de virtualización: VMWare, Parallels, VirtualBox, etc. Cada una tiene sus ventajas y defectos.

La principal diferencia entre ejecutar un sistema operativo de forma nativa, como se haría con Boot camp en el caso de Windows, es que todos los recursos de hardware están disponibles para el sistema operativo. En el caso de una ejecución virtualizada, si ejecutasemos un Windows virtualizado, sólo podríamos acceder a los recursos que el cliente de virtualización nos permita. Esto se debe, principalmente, a que los recursos de la máquina deben repartirse entre los dos sistemas operativos que se están ejecutando: el sistema operativo base o anfitrión, que ejecuta el cliente de virtualización, y el sistema operativo virtualizado.

Algunas ventajas de la virtualización es la posibilidad de almacenar instalaciones completas de un sistema operativo en discos externos. De esta forma, si nuestro Windows comienza a ir más lento o se detectan problemas de ejecución que nos hacen pensar en que tenemos que reinstalar, podemos ir a la carpeta donde nuestro cliente de virtualización guarda sus máquinas virtuales (que es como se conoce a una instalación de un sistema operativo virtualizado) y sustituir el Windows corrupto por nuestra copia de seguridad. Todo el proceso de reinstalación de Windows, más de 45 minutos, se reducen a un par de minutos. Incluso algunos clientes de virtualización permiten copiar o descargar instalaciones ya creadas.

Problemas de accesibilidad y virtualización

La ejecución virtualizada de un sistema operativo puede crear conflictos con algunos productos de apoyo. Por ejemplo, se conoce el problema que existe con VMWare, uno de los clientes de virtualización más utilizados, y la tecla de bloqueo de mayusculas, utilizada por varios lectores de pantalla como tecla de función. Además, el teclado de MacOS X no posee la tecla Insert, tecla también utilizada por varios productos de apoyo. La solución pasa por remapear la función de una de las teclas duplicadas del teclado (comando, mayúsculas, etc) y asignarle a dicha tecla la función de tecla Insert.

Un problema que afecta tanto a sistemas operativos virtualizados como nativos es la poca tolerancia del driver de vídeo de Jaws a drivers gráficos un tanto especiales. En el caso de una instalación nativa, una vez hayamos instalado los drivers de Boot camp, no encontraremos problemas. En el caso de una instalación de windows virtualizada, deberemos evitar el modificar el tamaño de la ventana del cliente de virtualización. Se recomienda utilizar Windows virtualizado a pantalla completa. Además, deberemos instalar los drivers para Windows del software de virtualización que estemos utilizando.

Conclusiones

Con estas posibilidades de ejecutar Windows y MacOS X el camino del switcher se hace más cómodo. Sólo debemos decidir si queremos 2 instalaciones nativas, para largos periodos de uso de una de ellas; o instalación nativa de MacOS X y virtualizada de Windows, por lo que Windows irá un poco más lento pero podremos saltar de un sistema operativo a otro de forma muy rápida.

Magnificadores de pantalla

Algunos usuarios poseen una discapacidad que, aunque pudiendo apreciar visualmente el mundo que les rodea, no pueden utilizar un ordenador debido a que la resolución o el tamaño o los colores empleados en la pantalla no pueden ser percibidos de forma clara, impidiendo la lectura del contenido de la pantalla al usuario. Este tipo de usuario necesita algo que realice la función de lupa o filtro de color para la pantalla, esta es la función de los magnificadores de pantalla.
Un magnificador de pantalla es, básicamente, un software que simula el efecto de una lupa sobre la pantalla del ordenador. Esta magnificación de la imagen de la pantalla se puede realizar en diferentes grados de aumento (zoom) y de diversas formas de visualización (a pantalla completa o mostrando la ampliación en un area determinada de la pantalla). Dependiendo de las necesidades del usuario, estos parámetros cambiarán.
Los aumentos realizables por un magnificador de pantalla dependen del algoritmo que emplee para realizar la ampliación (con efectos de antialiasing, proyecciones vectoriales o redimensionado matricial), y el método de tratamiento de la información de video (utilizando la propia VRAM y el hardware de video instalado en el equipo o delegandolo todo al procesador y el sistema operativo). Dependiendo de todos estos factores, un magnificador de pantalla puede realizar una ampliación de entre 1,5 aumentos y 700 aumentos.
A parte de la función de aumentar la imagen de la pantalla, algunos magnificadores de pantalla permiten aplicar un filtro de color a la imagen ampliada para que el usuario pueda personalizar el contraste de color y los tonos empleados en la imagen ampliada.
El foco de ampliación es un area móvil de la pantalla que, a semejanza del puntero del ratón, señaliza donde se encuentra el foco o zona de la pantalla que debe ser ampliada. Este foco puede ser modificado mediante el uso del ratón (siguiendo el foco de ampliación al puntero del ratón) mediante el uso de teclas de función o por eventos del sistema (ventanas o areas de pantalla que actualizan su información). El problema de estos movimientos de foco es transmitir al usuario, en todo momento, donde se encuentra ya que si el foco es modificado de repente, puede provocar una confusión del usuario. Por ejemplo: imaginemos que el usuario se encuentra leyendo un documento en su procesador de textos y el foco de ampliación está sobre la mitad de la pantalla. De repente, llega un correo electrónico y se muestra un pequeño icóno indicando de la presencia de nuevo correo. El magnificador de pantalla puede llevar el foco de ampliación directamente al icono de notificación de correo nuevo, si nuestro usuario no está atento puede leer algo como ‘En un lugar de la Mancha de cuyo correo electrónico nuevo…’.
Para solventar estos problemas y aumentar la funcionalidad de los magnificadores de pantalla se han hecho uso de tecnologías de síntesis de voz para notificar al usuario, mediante voz, la información acerca de lo que está leyendo o si el magnificador o el sistema ha realizado alguna operación.
Algunos sistemas operativos llevan incluidos un magnificador de pantalla rudimentario por lo que se opta por instalar software más funcional cuyas prestaciones son cada vez más cercanas a las que brinda un lector de pantallas al incluir síntesis de voz, posicionamiento subjetivo, navegación utilizando MSAA o AT-SPI u otras características de accesibilidad de los sistemas operativos.
Los problemas de accesibilidad que encuentran los usuarios de magnificadores de pantalla, a parte de encontrar imágenes sin un contraste suficiente para poder apreciar los detalles de una imagen o el uso de colores no soportados nativamente por el sistema, están los diseños de tamaños enormes que provocan la aparición de barras de desplazamiento horizontal o la existencia de contenido visual dinámico ((animaciones, videos, etc) que provocan que el magnificador intente focalizar todo lo que se mueva o que el propio usuario no pueda determinar qué ocurre en la animación o el video al, únicamente, poder visualizar una zona muy limitada de la imágen. Es como si intentasemos ver una película en el cine utilizando unas gafas cuya superficie de visualización fuera un pequeño círculo de 3cm de radio. Para ver la pantalla tendríamos que girar continuamente la cabeza para ver toda la pantalla y, aún así, no podríamos ver toda la pantalla en un mismo instante.

Algunos ejemplos de magnificadores de pantalla son: Gnome-Mag, Zoomtext, Once Mega 98, Magic, Supernova, Lunar.